0%

BUUCTF 每日打卡 2021-7-15

BUUCTF 每日打卡 2021-7-15

引言

[MRCTF2020]Easy_RSA

加密代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import sympy
from gmpy2 import gcd, invert
from random import randint
from Crypto.Util.number import getPrime, isPrime, getRandomNBitInteger, bytes_to_long, long_to_bytes
import base64

from zlib import *
flag = b"MRCTF{XXXX}"
base = 65537

def gen_prime(N):
A = 0
while 1:
A = getPrime(N)
if A % 8 == 5:
break
return A

def gen_p():
p = getPrime(1024)
q = getPrime(1024)
assert (p < q)
n = p * q
print("P_n = ", n)
F_n = (p - 1) * (q - 1)
print("P_F_n = ", F_n)
factor2 = 2021 * p + 2020 * q
if factor2 < 0:
factor2 = (-1) * factor2
return sympy.nextprime(factor2)


def gen_q():
p = getPrime(1024)
q = getPrime(1024)
assert (p < q)
n = p * q
print("Q_n = ", n)
e = getRandomNBitInteger(53)
F_n = (p - 1) * (q - 1)
while gcd(e, F_n) != 1:
e = getRandomNBitInteger(53)
d = invert(e, F_n)
print("Q_E_D = ", e * d)
factor2 = 2021 * p - 2020 * q
if factor2 < 0:
factor2 = (-1) * factor2
return sympy.nextprime(factor2)


if __name__ == "__main__":
_E = base
_P = gen_p()
_Q = gen_q()
assert (gcd(_E, (_P - 1) * (_Q - 1)) == 1)
_M = bytes_to_long(flag)
_C = pow(_M, _E, _P * _Q)
print("Ciphertext = ", _C)
'''
P_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024336556028267742021320891681762543660468484018686865891073110757394154024833552558863671537491089957038648328973790692356014778420333896705595252711514117478072828880198506187667924020260600124717243067420876363980538994101929437978668709128652587073901337310278665778299513763593234951137512120572797739181693
P_F_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024099427363967321110127562039879018616082926935567951378185280882426903064598376668106616694623540074057210432790309571018778281723710994930151635857933293394780142192586806292968028305922173313521186946635709194350912242693822450297748434301924950358561859804256788098033426537956252964976682327991427626735740
Q_n = 20714298338160449749545360743688018842877274054540852096459485283936802341271363766157976112525034004319938054034934880860956966585051684483662535780621673316774842614701726445870630109196016676725183412879870463432277629916669130494040403733295593655306104176367902352484367520262917943100467697540593925707162162616635533550262718808746254599456286578409187895171015796991910123804529825519519278388910483133813330902530160448972926096083990208243274548561238253002789474920730760001104048093295680593033327818821255300893423412192265814418546134015557579236219461780344469127987669565138930308525189944897421753947
Q_E_D = 100772079222298134586116156850742817855408127716962891929259868746672572602333918958075582671752493618259518286336122772703330183037221105058298653490794337885098499073583821832532798309513538383175233429533467348390389323225198805294950484802068148590902907221150968539067980432831310376368202773212266320112670699737501054831646286585142281419237572222713975646843555024731855688573834108711874406149540078253774349708158063055754932812675786123700768288048445326199880983717504538825498103789304873682191053050366806825802602658674268440844577955499368404019114913934477160428428662847012289516655310680119638600315228284298935201
Ciphertext = 40855937355228438525361161524441274634175356845950884889338630813182607485910094677909779126550263304194796000904384775495000943424070396334435810126536165332565417336797036611773382728344687175253081047586602838685027428292621557914514629024324794275772522013126464926990620140406412999485728750385876868115091735425577555027394033416643032644774339644654011686716639760512353355719065795222201167219831780961308225780478482467294410828543488412258764446494815238766185728454416691898859462532083437213793104823759147317613637881419787581920745151430394526712790608442960106537539121880514269830696341737507717448946962021
'''

事实上,这种题目吓唬人的成分很大,只要仔细看就能解出来 比如给的第一个函数```gen_prime````完全没有用到 后面的P_n和Q_n也可以爆破出来,然后照着他的加密方法解出P和Q,P_F_n和Q_E_D完全没有用到 最后就是常规的RSA了 解密代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from Crypto.Util.number import *
import sympy

P_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024336556028267742021320891681762543660468484018686865891073110757394154024833552558863671537491089957038648328973790692356014778420333896705595252711514117478072828880198506187667924020260600124717243067420876363980538994101929437978668709128652587073901337310278665778299513763593234951137512120572797739181693
P_F_n = 14057332139537395701238463644827948204030576528558543283405966933509944444681257521108769303999679955371474546213196051386802936343092965202519504111238572269823072199039812208100301939365080328518578704076769147484922508482686658959347725753762078590928561862163337382463252361958145933210306431342748775024099427363967321110127562039879018616082926935567951378185280882426903064598376668106616694623540074057210432790309571018778281723710994930151635857933293394780142192586806292968028305922173313521186946635709194350912242693822450297748434301924950358561859804256788098033426537956252964976682327991427626735740
Q_n = 20714298338160449749545360743688018842877274054540852096459485283936802341271363766157976112525034004319938054034934880860956966585051684483662535780621673316774842614701726445870630109196016676725183412879870463432277629916669130494040403733295593655306104176367902352484367520262917943100467697540593925707162162616635533550262718808746254599456286578409187895171015796991910123804529825519519278388910483133813330902530160448972926096083990208243274548561238253002789474920730760001104048093295680593033327818821255300893423412192265814418546134015557579236219461780344469127987669565138930308525189944897421753947
Q_E_D = 100772079222298134586116156850742817855408127716962891929259868746672572602333918958075582671752493618259518286336122772703330183037221105058298653490794337885098499073583821832532798309513538383175233429533467348390389323225198805294950484802068148590902907221150968539067980432831310376368202773212266320112670699737501054831646286585142281419237572222713975646843555024731855688573834108711874406149540078253774349708158063055754932812675786123700768288048445326199880983717504538825498103789304873682191053050366806825802602658674268440844577955499368404019114913934477160428428662847012289516655310680119638600315228284298935201
Ciphertext = 40855937355228438525361161524441274634175356845950884889338630813182607485910094677909779126550263304194796000904384775495000943424070396334435810126536165332565417336797036611773382728344687175253081047586602838685027428292621557914514629024324794275772522013126464926990620140406412999485728750385876868115091735425577555027394033416643032644774339644654011686716639760512353355719065795222201167219831780961308225780478482467294410828543488412258764446494815238766185728454416691898859462532083437213793104823759147317613637881419787581920745151430394526712790608442960106537539121880514269830696341737507717448946962021
_E = 65537

# P
P_p = 118153578345562250550767057731385782963063734586321112579869747650001448473633860305142281504862521928246520876300707405515141444727550839066835195905927281903880307860942630322499106164191736174201506457157272220802515607939618476716593888428832962374494147723577980992661629254713116923690067827155668889571
P_q = 118975085954858660642562584152139261422493348532593400307960127317249511761542030451912561362687361053191375307180413931721355251895350936376781657674896801388806379750757264377396608174235075021854614328009897408824235800167369204203680938298803752964983358298299699273425596382268869237139724754214443556383
P = sympy.nextprime(2021 * P_p + 2020 * P_q)
print(P)

# Q
Q_p = 120538849514661970159855851547577637711900368732462953774738483480759950867244867240401273864984981385806453735655967797329769252143125966966236767391995563418243748302685348336642872306042286401427581501609713577329945760930395130411743322595026287853073310150103535873078436896035943385067893062698858976291
Q_q = 171847486694659608706336923173786708071603689972942289760669690002615525263534483261477699540482615520223300780778172120221008417518590133753701145591943840552802072474293556608389677806415392384924913911677288126066245025731416399656855625839288752326267741979436855441260177305707529456715625062080892327017
Q = 2021 * Q_p - 2020 * Q_q
if Q < 0:
Q = (-1) * Q
Q = sympy.nextprime(Q)
print(Q)

# flag
D = inverse(_E, (P-1)*(Q-1))
M = pow(Ciphertext, D, P*Q)
print(long_to_bytes(M))
结果为: 在这里插入图片描述

[ACTF新生赛2020]crypto-aes

加密代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from Cryptodome.Cipher import AES
import os
import gmpy2
from flag import FLAG
from Cryptodome.Util.number import *

def main():
key=os.urandom(2)*16
iv=os.urandom(16)
print(bytes_to_long(key)^bytes_to_long(iv))
aes=AES.new(key,AES.MODE_CBC,iv)
enc_flag = aes.encrypt(FLAG)
print(enc_flag)
if __name__=="__main__":
main()

AES基本没有了解过,以前尝试看了加密函数的[官方文档],没怎么看明白(https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html) 只能找wp 如果只是解题的话,只需要利用

1
2
aes = AES.new(key,AES.MODE_CBC,iv)
flag = aes.decrypt(enc_flag)
两句代码即可,关键是解出key(密钥)和iv(初始化向量) 可以看到key是由8个重复的随机生成的2bytes,16bits的字符串组成32bytes,256bits字符串,iv则是随机生成16bytes,128bits的字符串 已知key与iv做异或运算得到的结果,所以key的前16bytes字符是不变的,由此可以推断出key 再用key后16bytes与异或的结果进行异或运算可以得到iv 解密代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
from Crypto.Util.number import *
from Crypto.Cipher import AES

xor = 91144196586662942563895769614300232343026691029427747065707381728622849079757
enc_flag = b'\x8c-\xcd\xde\xa7\xe9\x7f.b\x8aKs\xf1\xba\xc75\xc4d\x13\x07\xac\xa4&\xd6\x91\xfe\xf3\x14\x10|\xf8p'

key = long_to_bytes(xor)[:16] * 2
print(key)
iv = bytes_to_long(long_to_bytes(xor)[16:]) ^ bytes_to_long(key[16:])
iv = long_to_bytes(iv)
aes = AES.new(key, AES.MODE_CBC, iv)
flag = aes.decrypt(enc_flag)
print(flag)

结果为: 在这里插入图片描述

结语:

希望继续坚持

欢迎关注我的其它发布渠道

-------- 本文结束 感谢阅读 --------