0%

BUUCTF 每日打卡 2021-9-5

## 引言

假期的最后一天(其实已经是到学校的第二天了),明天就要开始上课了 今天打了打 GrabCON CTF2021

[GrabCON CTF2021]Warm-up

在这里插入图片描述 题目附件如下:

1
S01ZRENXU1NJVkhGUVZKUkpaRkZNMlNLSTVKVENWU0xLVlZYQVlLVElaTkVVVlRNS0pIRkc2U1dKVkpHV01LWEtaQ1VVVENXTlJORlNVS1dOUkdGS01EVUs1S0dXVlNLS1pDWFFUQ1ROUllFT1VUTE1STFZDTUxFSk5MR1c0Q0lLWVlEQ1RDWEtWMkZNVjJWTkJKRk1SS09MQktHV05EWktKV0U0VlNOTlJTRVdWVEtLSkxWR01CUklOTEdXNUNQS05XRkVSQ1dLWkhFSVVaUk9CTUZFMjJXS1ZKVENXU0tLWlZWVVJTVUdGTEZLVkNGR0ZIVTRSU1ZQRkdXWVRTTUtOVlRLVEtTR0ZSVEFVSlFNUkdGSVZUTUs1SkZNVExaS1pWWElWMk5OTkxFNFZUS0pKTFZJUkxRSlZKR1dNS1RLTVlEU1RDVk5OMkVRVjJXSlpLRk1WTFVKTkpUQ1VTRUtaV0U0VjJTR0JORklVU1dNUkxGTVJMVUpSSldXNkNYS0lZVlVSQ1RHQVlVT1ZDRk1STUU0VktPS0ZKVENTU0VLWldGTVZLUkdGU0U2VkxMTVJNVktNS1dNRktXV09LREtFWUZVVUNWTk4yRVFVWlJPQkdGTVJLT0s1S1RBM0NNS0pWWFFTQ1hLWlNFSVZMTE1SRFZJMjIySlJMR1dUU0hLSVlWVVMyV05OU0ZHVTMySkpGRksyM0VLVklWTVVTVUtSS1hJVDJXR0JORk1WTDJKSk1GRU1DMktOTEVLUlNXS05XRU1VQ1JOTlNFT1ZEMkpGNUZPVkxMR0ZKVEFXU09LWVlVNFJTVEdGWUVJVlJRTlJKRTIyWlZKNUtHV05LR0tWTEZVVkNXTk00VUdVM0xMSkZGSzIzWUtKSldXU1NMS0lZV0dNS1JHRkpFWVZMTEpaTVZLVlNPSlJLVEE1Q1NLNUtWRVZDV0tWSEZNVVJRSVVZRk0yMkdLWkpXVVZTSktaS0RBT0tRS1FZRFNVQ1JIVTZRPT09PQ==
容易猜测是base64,找了个base64在线工具,解密结果如下: 在这里插入图片描述 联系题面,不难猜想解密结果为base32加密密文,又找了一个base32在线解密工具,解密结果如下: 在这里插入图片描述 容易发现,解密结果又是base64密文形式,接着连续base64和base32解密,得到结果: 在这里插入图片描述

[GrabCON CTF2021]Poke Ball RSA

在这里插入图片描述 附件内容如下:

1
2
3
n = 498934084350094415783044823223130007435556803301613073259727203199325937230080661117917023582579699673759861892703348357714077684549303787581429366922208568924252052118455313229534699860304480039147103608782140303489222166267907007839021544433148286217133494762766492655602977085105487216032806292874190551319
e = 134901827939710543990222584187396847806193644190423846456160711527109836908087675183249532946675670587286594441908191054495871501233678465783530503352727362726294270065122447852357566161748618195216611965946646411519602447104878893524856862722902833460104389620397589021732407447981724307130484482495521398799
c = 100132888193232309251839777842498074992587507373917163874335385921940537055226546911990198769720313749286675018486390873216490470403470144298153410686092752282228631590006943913867497072931343354481759219425807850047083814816718302223434388744485547550941814186146959750515114700335721173624212499886218608818
e很长,盲猜wiener's attack,套用网上抄的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gmpy2
from Crypto.Util.number import *

def transform(x, y): # 使用辗转相处将分数 x/y 转为连分数的形式
res = []
while y:
res.append(x // y)
x, y = y, x % y
return res


def continued_fraction(sub_res):
numerator, denominator = 1, 0
for i in sub_res[::-1]: # 从sublist的后面往前循环
denominator, numerator = numerator, i * numerator + denominator
return denominator, numerator # 得到渐进分数的分母和分子,并返回


# 求解每个渐进分数
def sub_fraction(x, y):
res = transform(x, y)
res = list(map(continued_fraction, (res[0:i] for i in range(1, len(res))))) # 将连分数的结果逐一截取以求渐进分数
return res


def get_pq(a, b, c): # 由p+q和pq的值通过维达定理来求解p和q
par = gmpy2.isqrt(b * b - 4 * a * c) # 由上述可得,开根号一定是整数,因为有解
x1, x2 = (-b + par) // (2 * a), (-b - par) // (2 * a)
return x1, x2


def wienerAttack(e, n):
for (d, k) in sub_fraction(e, n): # 用一个for循环来注意试探e/n的连续函数的渐进分数,直到找到一个满足条件的渐进分数
if k == 0: # 可能会出现连分数的第一个为0的情况,排除
continue
if (e * d - 1) % k != 0: # ed=1 (mod φ(n)) 因此如果找到了d的话,(ed-1)会整除φ(n),也就是存在k使得(e*d-1)//k=φ(n)
continue

phi = (e * d - 1) // k # 这个结果就是 φ(n)
px, qy = get_pq(1, n - phi + 1, n)
if px * qy == n:
p, q = abs(int(px)), abs(int(qy)) # 可能会得到两个负数,负负得正未尝不会出现
d = gmpy2.invert(e, (p - 1) * (q - 1)) # 求ed=1 (mod φ(n))的结果,也就是e关于 φ(n)的乘法逆元d
return d
print("该方法不适用")


n = 498934084350094415783044823223130007435556803301613073259727203199325937230080661117917023582579699673759861892703348357714077684549303787581429366922208568924252052118455313229534699860304480039147103608782140303489222166267907007839021544433148286217133494762766492655602977085105487216032806292874190551319
e = 134901827939710543990222584187396847806193644190423846456160711527109836908087675183249532946675670587286594441908191054495871501233678465783530503352727362726294270065122447852357566161748618195216611965946646411519602447104878893524856862722902833460104389620397589021732407447981724307130484482495521398799
c = 100132888193232309251839777842498074992587507373917163874335385921940537055226546911990198769720313749286675018486390873216490470403470144298153410686092752282228631590006943913867497072931343354481759219425807850047083814816718302223434388744485547550941814186146959750515114700335721173624212499886218608818
d = wienerAttack(e, n)
print("d=", d)
m = pow(c, d, n)
print(long_to_bytes(m))

得到结果如下: 在这里插入图片描述 得到e=2,原本以为是rabin 但是分解n发现: 在这里插入图片描述 p,q都比c大,所以\(c^2 << pq=n\),直接开根就行,结果为: 在这里插入图片描述

[GrabCON CTF2021]Old Monk's Password

在这里插入图片描述 加密代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
enc = b'\x0cYUV\x02\x13\x16\x1a\x01\x04\x05C\x00\twcx|z(((%.)=K%(>'
enc1 = b'\x0bPPS\r\x0b\x02\x0f\x12\r\x03_G\t\x08yb}v+--*+*8=W,>'
enc2 = b'\x07A[\x06\\\r\x15\t\x04\x07\x18VG]U]@\x02\x08&9&%\' 41".;'

import codecs
import random

class pass_w:
x = "hjlgyjgyj10hadanvbwdmkw00OUONBADANKHM;IMMBMZCNihaillm"
def encode(self, text, i = -1):


if i < 0 or i > len(self.x) + 1:
i = random.randint(0, len(self.x) + 1)

out = chr(i)
for c in text:
out += chr(ord(c) ^ ord(self.x[i]))
i = (i + 1)%79

return codecs.encode(out)


y = pass_w()
print(y.encode("REDACTED"))


#Enclose password within GrabCON{}

按照加密代码,密文的第一位即为随机数i,然后按照加密代码逐位异或运算即可,解密代码为:

1
2
3
4
5
6
7
8
9
10
11
12
13
enc = b'\x0cYUV\x02\x13\x16\x1a\x01\x04\x05C\x00\twcx|z(((%.)=K%(>'
enc1 = b'\x0bPPS\r\x0b\x02\x0f\x12\r\x03_G\t\x08yb}v+--*+*8=W,>'
enc2 = b'\x07A[\x06\\\r\x15\t\x04\x07\x18VG]U]@\x02\x08&9&%\' 41".;'
def decode(cipher):
x = "hjlgyjgyj10hadanvbwdmkw00OUONBADANKHM;IMMBMZCNihaillm"
i = cipher[0]
m = ''
for c in cipher[1:]:
m += chr(c ^ ord(x[i]))
i = (i + 1) % 79
return m
print(decode(enc) + decode(enc1) + decode(enc2))
print('GrabCON{' + decode(enc) + '}')
发现三个密文的明文都是一样的,结果为: 在这里插入图片描述

结语

可能要摸一段时间 希望继续坚持